## Increased Myotonic Dystrophy type 1 (DM1) Disease Severity is Associated with a Dysregulated Immune System

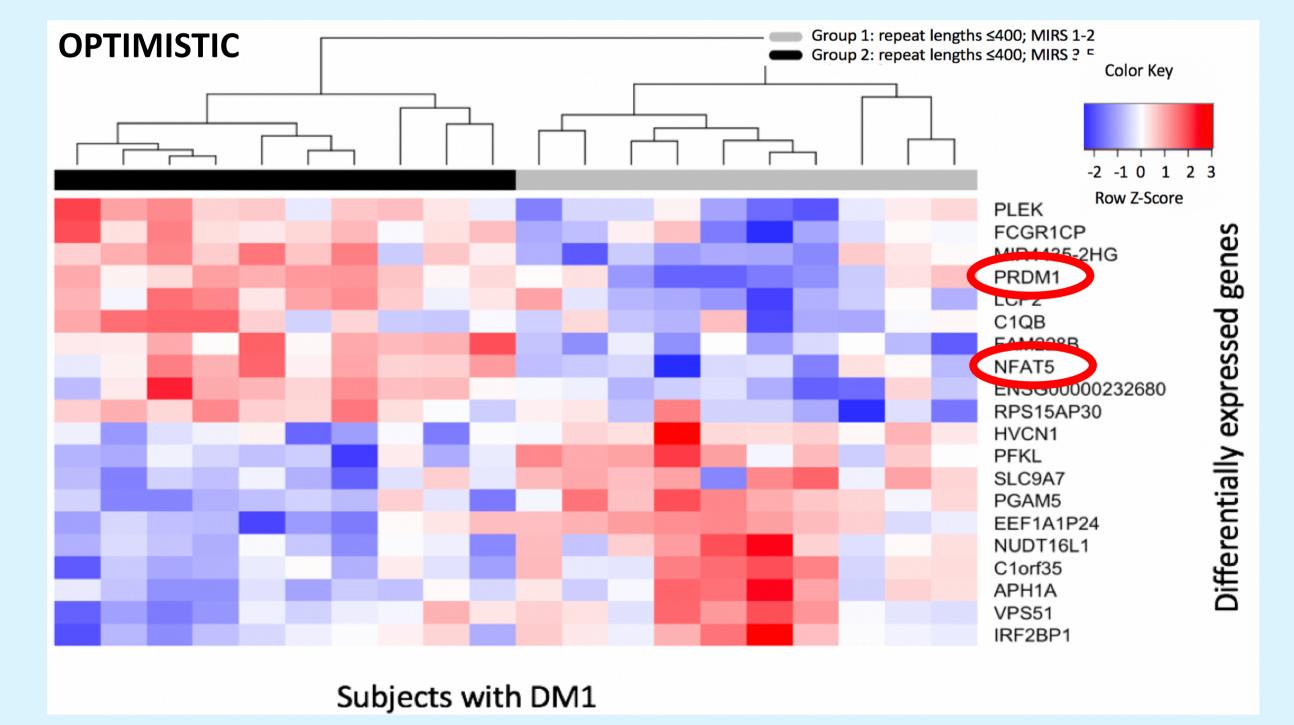
Nieuwenhuis S<sup>1,2</sup>, Widomska J<sup>2</sup>, Blom P<sup>3</sup>, 't Hoen PAC<sup>1</sup>, van Engelen B<sup>4</sup> and Glennon JC<sup>2,5</sup>

<sup>1</sup>Dept. CMBI, RadboudUMC, Nijmegen, The Netherlands, <sup>2</sup>Dept. Cognitive Neuroscience, RadboudUMC, Nijmegen, The Netherlands, <sup>3</sup>VDL Enabling Technologies Group B.V., The Netherlands, <sup>4</sup>Dept. of Neurology, Donders Institute for Brain Cognition and Behaviour, RadboudUMC, Nijmegen, <sup>5</sup>Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Ireland. E-mail: sylvia.nieuwenhuis@radboudumc.nl

## INTRODUCTION

- Myotonic dystrophy type 1 (DM1)
- Multisystemic disorder
- Symptoms not limited to muscle<sup>1</sup>
- Accelerated aging disease linked to immune

## APPROACH


- Stratify DM1 blood samples based on MIRS severity ratings (G1 MIRS 1-2, G2 MIRS 3-5) with the same CTG repeat expansion size (CTG<400)</li>
- Transcriptomic data from DM1 blood samples from 2 independent cohorts at baseline (without intervention) (EU OPTIMISTIC study (n=10 per group) and Marigold foundation DMBDI study (n=6 per group)

dysfunction and muscle loss<sup>1</sup>

- CTG repeat length in DMPK gene → accumulation of RNA transcripts and splice variants
- Severity of symptoms measured by Muscle Impairment Rating Scale (MIRS) is associated with Low Quality of Life (QoL) for which biomarkers are needed as surrogate clinical outcomes
- Be aware skeletal muscles are antigen presenting cells (APCs)

## RESULTS

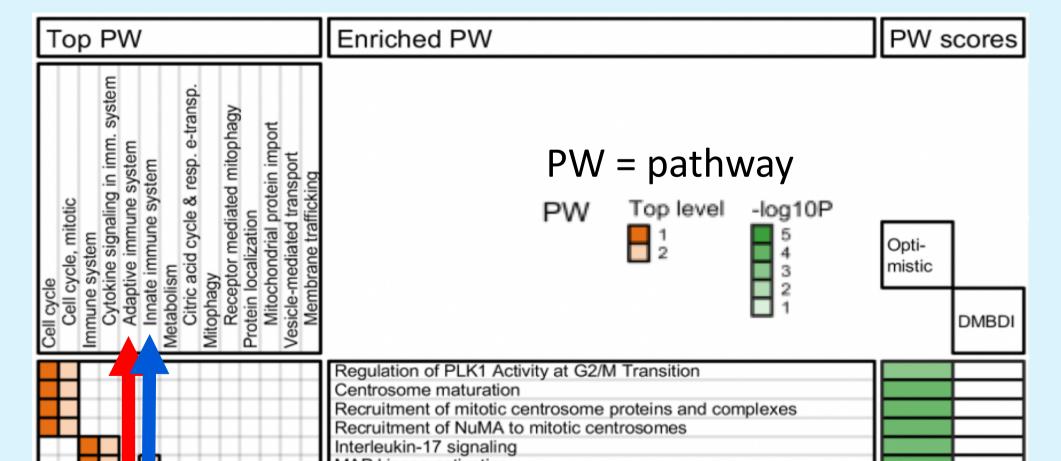
#### **GENE EXPRESSION**



### DATA ANALYSIS

 OPTIMISTIC RNAseq + differential gene expression (DGE) analysis and DMBDI - microarray gene expression<sup>3</sup>

#### **PATHWAY ANALYSIS**

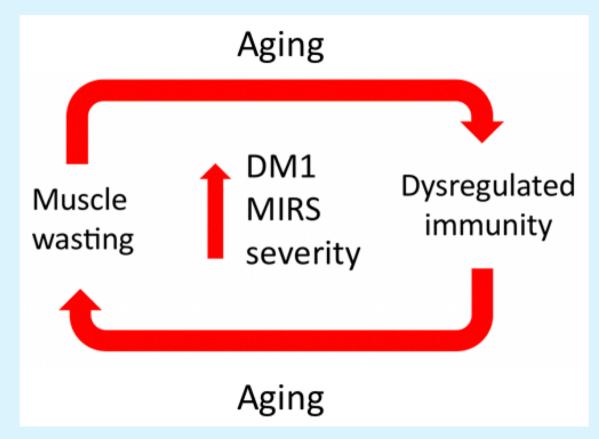

- Ingenuity Pathway Analysis (IPA), Diseases and Functions
- Reactome Pathway Analysis, Gene Ontology terms Master Regulators; causal network analysis in IPA
  Splicing

## RESULTS

### **MASTER REGULATORS**

Many master regulators, e.g., FOXD1, PAX5, CIITA, QKI, VEGFA, VIM, IL4, MLX are implicated in muscle differentiation and/or repair processes. These two processes are essential for muscle wasting observed in DM1.

#### **PATHWAY ANALYSIS**




#### SPLICING

This study demonstrates no significant splicing changes.

## CONCLUSION

The current study demonstrates that muscle wasting together with aging deteriorate immunity leading to increasing DM1 severity.



PRDM1 and NFAT5 which both play a role in immunity are among the top 20 DE genes in OPTIMISTIC.

Pathway analysis (Reactome) demonstrates that adaptive immunity plays a key role in both OPTIMISTIC and DMBDI datasets (red box in pathway analysis figure).

| MAP kinase activation                                        |
|--------------------------------------------------------------|
|                                                              |
| TCR signaling                                                |
| Downstream TCR signaling                                     |
| Phosphorylation of CD3 and TCR zeta chains                   |
| Translocation of ZAP-70 to Immunological synapse             |
| MHC class II antigen presentation                            |
| Costimulation by the CD28 family                             |
|                                                              |
| MyD88-independent TLR4 cascade                               |
| TRIF(TICAM1)-mediated TLR4 signaling                         |
| MyD88 dependent cascade initiated on endosome                |
| TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 |
| Toll Like Receptor 10 (TLR10) Cascade                        |
| MyD88 cascade initiated on plasma membrane                   |
| Toll Like Receptor 3 (TLR3) Cascade                          |
| Toll Like Receptor 5 (TLR5) Cascade                          |
| Toll Like Receptor 7/8 (TLR7/8) Cascade                      |
| Complex I biogenesis                                         |
| Receptor Mediated Mitophagy                                  |
| Mitochondrial protein import                                 |
|                                                              |

Furthermore, these analysis also demonstrates a role for innate immunity which is the first line of immunity is seen in several TLR cascades (blue box).Both activated and inhibited Master Regulators also support a role for inflammatory and immune signaling.

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 305697 (OPTIMISTIC). In addition, funding has been received under the European Community's E-RARE programme under grant agreement no. 18-038 (ReCognitiOn).

#### References:

- 1) S. Nieuwenhuis, "Insulin Signaling as a Key Moderator in Myotonic Dystrophy Type 1". Frontiers in Neurology Volume(10):1-17, 2019.
- 2) K. Okkersen, "Cognitive behavioural therapy with optional graded exercise therapy in patients with severe fatigue with myotonic dystrophy type 1: a multicentre, single-blind, randomised trial". Lancet Neurol. Volume(8):671-680, 2018.
- A. Kurkiewics, "Towards development of a statistical framework to evaluate myotonic dystrophy type 1 mRNA biomarkers in the context of a clinical trial". Plos One Volume(4):1-19, 2020.
   L. Madaro, "From innate to adaptive immune response in muscular dystrophies and skeletal muscle regeneration: the role of lymphocytes". Biomed Res Int Volume(2014):1-12, 2014.
   B. Cao, "Muscle stem cells can act as APCs: implication for gene therapy". J. Gene Therapy Volume(11):1321-1330, 2004.



# Institute for Molecular Life Sciences Radboudume (1)