

Metabolomic effects of single-gene deletions in Saccharomyces cerevisae

João Mendonça da Luz, Ana Sofia Pendão, Francisco Traquete, António E. N. Ferreira,

Marta Sousa Silva, Carlos Cordeiro

FT-ICR and Structural Mass Spectrometry Laboratory, Faculdade de Ciências, Universidade de Lisboa

Introduction and methods

S. cerevisiae has only 6000 genes, most of which can be deleted without noticeable consequences. We searched for **"hidden effects"** of single-gene deletions through an untargeted **FT-ICR-MS metabolomic** analysis of 5 isogenic strains, mainly related to methylglyoxal, a toxic by-product of glycolysis.

Results

We were able to discriminate between all strains using **multivariate statistical analysis** of extreme resolution **FT-ICR-MS** data.

Furthermore, inter-strain comparisons revealed the existence of two groups:

- One formed by the reference strain (BY4741) and aldose reductase mutant (ΔGRE3)
- The other formed by the two glyoxalase mutant strains (ΔGLO1/2) and the enolase mutant strain (ΔENO1)

Work supported by the Project EU_FT-ICR_MS, funded by EU H2020 research and innovation programme under grant agreement nr. 731077

Hierarchical Clustering dendrogram (left) and Principal Component Analysis score plot (right) of the FT-ICR-MS data

Hierarchical Clustering and Principal Component Analysis plots reveal greater similarity between samples of the same strain, which always cluster together

Mass (Da)	Metabolite Name	Molecular Formula	VIP Score	Relative concentration
				ВY4741 ΔGL01 ΔGL02 ΔGRE3 ΔGRE3 ΔEN01
307.0838	Glutathione	$C_{10}H_{17}N_3O_6S$	8.418	
493.3168	PC(16:1(9Z)/0:0)	C ₂₄ H ₄₈ NO ₇ P	5.993	
624.0873	N/A	$C_{14}H_{28}N_{10}O_{10}S_4$	5.588	
257.1029	Glycerophosphocholine	C ₈ H ₂₀ NO ₆ P	4.837	

Glutathione is the most relevant metabolite for strain differentiation in agreement with its role as catalytic cofactor of the glyoxalase pathway

