DNA methylation signatures of educational attainment

An epigenome-wide association study in four Dutch cohorts

Jenny van Dongen Vrije Universiteit Amsterdam, Netherlands Twin Register September 28 2020

Biobank-based Integrative Omics (BIOS) Consortium

Large-scale infrastructure to analyse genetic (imputed SNPs), methylome (Illumina 450k array), transcriptome (RNA-seq), and phenotypic data on ~4000 individuals from 6 Dutch biobanks.

BBMRI.nt Bobarking and Botholecular resources Batholecular resources	BIOS Consortium BBMRI-NL Verified email at lumc.nl - <u>Homepage</u>		Follow	GET	MY OWN PROFILE	
The Netherlands	Integrative genomics			Cited by		
					All S	Bince 2015
TITLE		CITED BY	YEAR	Citations h-index i10-index	5522 32 45	5298 32 45
Systematic identifi HJ Westra, MJ Peters, Nature genetics 45 (10	ication of trans eQTLs as putative drivers of known disease associations , T Esko, H Yaghootkar, C Schurmann, J Kettunen,)), 1238-1243	1329	2013			1400
Epigenome-wide a adiposity S Wahl, A Drong, B Le Nature 541 (7635), 81	association study of body mass index, and the adverse outcomes of the, M Loh, WR Scott, S Kunze, PC Tsai, JS Ried, $_{\rm 26}$	403	2017		лİ	1050
Genome-wide association study identifies 30 loci associated with bipolar disorder EA Stahl, G Breen, AJ Forstner, A McQuillin, S Ripke, V Trubetskoy, Nature genetics 51 (5), 793-803			2019	2013 2014 2015	2016 2017 2018 2019	350
Heritability and ge FA Wright, PF Sullivan Nature genetics 46 (5)	nomics of gene expression in peripheral blood , Al Brooks, F Zou, W Sun, K Xia, V Madar, , 430-437	292	2014	2010 2014 2010 2010 2011 2010 2018 2020		
From promises to J Mill, BT Heijmans Nature Reviews Gene	practical strategies in epigenetic epidemiology tics 14 (8), 585-594	288	2013	Co-authors	mans	
Trans-ancestry ge pressure and impl N Kato, M Loh, F Take Nature genetics 47 (11	nome-wide association study identifies 12 genetic loci influencing blood icates a role for DNA methylation uchi, N Verweij, X Wang, W Zhang, TN Kelly,). 1282-1293	217	2015	Lude Fra Professo	iniversity Medical Cen anke or of Functional Genon	nic
Disease variants a MJ Bonder, R Luijk, D' Nature genetics 49 (1)	alter transcription factor levels and methylation of their binding sites V Zhemakova, M Moed, P Deelen, M Vermaat, , 131-138	212	2017	Rick Jan Assistan Peter A. Professo	isen t Professor, Departme C. ' t Hoen or Bioinformatics, Cent	nt) re)
Identification of co DV Zhernakova, P De Nature genetics 49 (1)	ntext-dependent expression quantitative trait loci in whole blood elen, M Vermaat, M Van Iterson, M Van Galen, , 139-145	198	2017			
Shared genetic or MA Ferreira, JM Vonk, Nature genetics 49 (12	igin of asthma, hay fever and eczema elucidates allergic disease biology H Baurecht, I Marenhoiz, C Tian, JD Hoffman, 2), 1752-1757	192	2017			
Genetic and environme methylome J Van Dongen, MG Nin Nature communication	onmental influences interact with age and sex in shaping the human vard, G Willemsen, JJ Hottenga, Q Helmer, s 7 (1), 1-13	162	2016			
Genome-wide ana	alysis identifies 12 loci influencing human reproductive behavior	149	2016			

https://www.bbmri.nl/acquisition-use-analyze/bios Available data: https://omics-explorer.bbmri.nl.

Epigenome-wide association study

- Cohorts:
 - Netherlands Twin Register (NTR)
 - Leiden Longevity Study (LLS)
 - Rotterdam Study (RS)
 - Lifelines-Deep (LLD)

Approach: 1. EWAS in individual BIOS cohorts

2. Fixed-effects meta-analysis

Total sample size = 4179

Cohort	NTR	LLS	RS	LLD	
Ν	2199	668	608	704	
% female	68.6	52.5	57.7	57.67	
Age, mean	38.2	59.1	68.6	47.32	
(sd)	(12.6)	(6.6)	(5.6)	(12.47)	
birth year, mean	1968	1945	1943	1965	
(range)	('26-89')	('25'74)	('30-'60)	('31-'87)	

Tissue: peripheral whole blood (Illumina 450k methylation array)

van Dongen, Jenny, et al. "DNA methylation signatures of educational attainment." *npj Science of Learning* 3.1 (2018): 1-14.

Educational attainment

Harmonization of the raw phenotype data:

1. Highest completed level of education at the age of 25 or higher – **7 categories**.

7 Levels				
1. primary school only				
-lager onderwijs				
2. lower vocational schooling				
-lager beroepsonderwijs (lbo)				
3. lower secondary schooling (general)				
- middelbaar algemeen onderwijs (lavo, mavo)				
4. intermediate vocational schooling				
- middelbaar beroepsonderwijs (mbo)				
5. intermediate/higher secondary schooling (general)				
- voorgezet algemeen onderwijs (havo, vwo)				
6. higher vocational schooling				
-hoger beroepsonderwijs (hbo)				
7. University				
- wetenschannelijk onderwijs (wo)				

Educational attainment as a function of birth year

EWAS

- Linear relationship DNA methylation (outcome variable) education level (predictor)
- Covariates
 - Sex
 - Age
 - White blood cell counts
 - 96-wells plate, 450k row
- Additional analyses:
 + covariate smoking status

Relevance

Educational attainment

Important correlate/indicator of:

- Cognitive and personality characteristics (e.g. intelligence, attention, memory, reading ability, persistence, self-discipline)
 - Advantage : well-documented in many cohorts
 - Social environment in which the individual is born and raised-
 - Social outcomes of individual (occupation, income)
 - Health
 - Average life expectancy at birth: 79,1 Dutch men, 82,8
 Dutch women (RIVM reports 2012).
 - Difference in the Netherlands between high and loweducated groups:
 - 6.5 years for men
 - 6,1 years for women

Meta-analysis: 58 significant CpG sites

CNTNAP2: Contactin Associated Protein-Like 2- a neuronal transmembrane protein (neurexin family).

- *CNTNAP2* = target of transcription factor *foxp2*
- Genetic variants in *CNTNAP2* associated with neurodevelopmental phenotypes: language impairment, autism, intellectual disability, dyslexia, schizophrenia

PCDH9 : protocadherin 9.

- Copy-number variants: autism spectrum disorder
- knock-out mice: social and object recognition deficits.
- also described as a tumor-suppressor gene

AHRR (top site cg05575921).

- Aryl-Hydrocarbon Receptor Repressor
- One of the most strongly associated and best replicating hits in previous EWAS of smoking phenotypes

All 58 CpGs previously associated with smoking & 50% previously associated with prenatal maternal smoking

EWAS education, unadjusted for smoking status: 58 significant CpGs

25

Chromosome

Effect size: AHRR methylation – educational attainment in NTR

-0.025

No adjustment for smoking

Adjusted for smoking status

Adjusted for smoking status + smoking packyears

Adjusted for smoking status + maternal prenatal smoking

effect size in never smokers

effect size in never smokers, adjusted for maternal smoking

The AHR pathway

- AHR =Aryl-Hydrocarbon Receptor: binds to various environmental toxins (e.g dioxins, benzopyrene, PCBs) and endogenous substrates
- AHR is a transcription factor for:
 - Xenobiotic metabolism genes
 - Developmental genes
 - AHRR
- AHRR: represses the functioning of AHR (negative feedback)
- Increased expression of AHRR following prenatal and lactational dioxin exposure disturbs neural network formation in the developing mouse brain (Kimura et al 2015; 2016)

Nature Reviews | Cancer

Bernsten et al. bHLH–PAS proteins in cancer. Nature Reviews Cancer 13, 827–841 (2013) doi:10.1038/nrc3621

Follow-up: methylation level during fetal brain development

- 58 education associated sites
 - 18 show are dynamic in the fetal brain (significant after Bonferroni correction, 58 tests)

Dataset: Spiers, H. et al. Methylomic trajectories across human fetal brain development. *Genome Res.* 25, 338–352 (2015).

Cg25189904 (*GNG12*) r=-0.57,p= 7.1e-17 Top hit education (AHRR) r =0.27, p=2.5e-04 Cg21322436 (*CNTNAP2*) r = -0.19, p=9.6e-03

Follow-up: correlation methylation level blood – brain (postmortem)

- 58 education associated sites :
 - 10 significant correlation: blood one or multiple brain regions (Bonferroni correction 232 tests).
 - range: r = 0.36 to r = 0.63

Dataset: Hannon, E., Lunnon, K., Schalkwyk, L. & Mill, J. Interindividual methylomic variation across blood, cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric phenotypes. *Epigenetics* **10**, 1024–1032 (2015).

Blood EWAS of educational attainment shows epigenetic signatures of:

Dutch population (N=4152, adults)

Prenatal maternal plasma folate

Air pollution (fine matter)

Alcohol consumption (not significant)

ARTICLE

Received 10 Jun 2015 | Accepted 23 Feb 2016 | Published 7 Apr 2016

DOI: 10.1038/ ncomms11115 OPEN

Genetic and environmental influences interact with age and sex in shaping the human methylome

Jenny van Dongen^{1,*}, Michel G. Nivard^{1,*}, Gonneke Willemsen¹, Jouke-Jan Hottenga¹, Quinta Helmer¹, Conor V. Dolan¹, Erik A. Ehli², Gareth E. Davies², Maarten van Iterson³, Charles E. Breeze⁴, Stephan Beck⁴, BIOS Consortium[†], H. Eka Suchiman³, Rick Jansen⁵, Joyce B. van Meurs⁶, Bastiaan T. Heijmans^{3,**}, P. Eline Slagboom^{3,**} & Dorret I. Boomsma^{1,**}

Genetic influences on education-associated CpGs (mean heritability=58%)

Discussion

- Education closely related to health, Alzheimer's disease, societal inequality
- Cognition = brain / DNA methylation = blood
- Methylome: environmental and lifestyle differences

Thanks to

The Biobank-Based Omics Study (BIOS) Consortium

Article | Open Access | Published: 23 March 2018

DNA methylation signatures of educational attainment

Jenny van Dongen ^[], Marc Jan Bonder, Koen F. Dekkers, Michel G. Nivard, Maarten van Iterson, Gonneke Willemsen, Marian Beekman, Ashley van der Spek, Joyce B. J. van Meurs, Lude Franke, Bastiaan T. Heijmans, Cornelia M. van Duijn, P. Eline Slagboom, Dorret I. Boomsma & BIOS consortium

npj Science of Learning 3, Article number: 7 (2018) Cite this article
2300 Accesses 6 Citations 26 Altmetric Metrics

Resources

Results

This website gives you access to the summary data of all association studies that have been performed by the <u>BBMRI-NL</u> consortium.

DNA methylation array QC and analysis pipelines

Streamlined workflow for the quality control, normalization, and analysis of Illumina methylation array data

Lucy Sinke, Maarten van Iterson, Davy Cats, BIOS Consortium, Roderick Slieker, and Bas Heijmans

Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands

http://bbmri.researchlumc.nl/atlas/

nl/atlas/ https://molepi.github.io/DNAmArray_workflow/index.html