

From genetics to neurobiology through transcriptomic data analysis

Ahmed Mahfouz

Dept. of Human Genetics, Leiden University Medical Center Leiden Computational Biology Center, LUMC Pattern Recognition and Bioinformatics, TU Delft

A functional genomics approach

Spatio-temporal patterns

Interactive visualization

Arlin Keo

ARTICLE

Check for updates

https://doi.org/10.1038/s42003-020-0804-9 OPEN

Transcriptomic signatures of brain regional vulnerability to Parkinson's disease

Arlin Keo 1,2 , Ahmed Mahfouz 1,2 , Angela M.T. Ingrassia³, Jean-Pascal Meneboo^{4,5}, Celine Villenet⁴, Eugénie Mutez^{6,7,8}, Thomas Comptdaer 6,7 , Boudewijn P.F. Lelieveldt^{2,9}, Martin Figeac^{4,5}, Marie-Christine Chartier-Harlin $^{6,7 \mathbd{ \ ohear}}$, Wilma D.J. van de Berg $^{3 \mathbd{ \ ohear}}$, Jacobus J. van Hilten $^{10 \mathbd{ \ ohear}}$ & Marcel J.T. Reinders $^{1,2 \mathbd{ \ ohear}}$

Keo et al. Communication Biology 2020

Parkinson's disease (PD) progression

Loss of smell Little or no facial expression Tremor

Bradykinesia Rigidity Cognitive impairment Dementia

Progressive pathology described by Braak

Region-specific expression patterns underly selective regional vulnerability in PD

Allen Human Brain Atlas (AHBA)

- Genome-wide microarray data of the healthy brain (20,017 genes)
- 6 Adult donors (5 males & 1 female, mean age 42, range 24-57 years)
- 3,702 Samples (363-946 per donor)
- Samples: MNI coordinates, anatomical annotation

Brain regions involved in Braak stages

Myelencephalon (R1, N=279)

Pontine tegmentum (**R2**, N=414)

Substantia nigra, basal nucleus of Meynert, CA2 field (**R3**, N=89)

Amygdala, occipito-temporal gyrus (R4, N=107)

Cingulate gyrus, temporal lobe (**R5**, N=618)

Frontal lobe, parietal lobe (**R6**, N=827)

Braak stage-related genes (BRGs)

Criteria for BRGs selection:

- 1. Correlation between gene expression and Braak stage labels
- 2. Differential expression between R1 & R6

Braak stage-related genes (BRGs)

Braak stage-related genes (BRGs)

Expression of BRGs for one donor across AHBA donors

 Region
 Donor

 R1
 9861

 R2
 10021

 R3
 12876

 R4
 14380

 R5
 15496

 R6
 15697

Validation in larger (healthy) cohorts

16

Validation in PD brains

Validation in PD brains

medulla oblongata (R1), locus ceruleus (R2), and substantia nigra (R3)

Expression of PD-implicated genes is related to Braak staging

Negative correlated BRGs	Gene	Braak correlation	Fold- change	P-value (BH-corrected)	Reference
R1 R2 R3 R4 R5 R6	SCARB2 ELOVL7	-0.78 -0.67	-1.44 -1.35	1.7E-03 1.4 E-03	Nalls et al. 2014 Chang et al. 2017
Positive correlated BRGs	SH3GL2	0.70	1.40	2.3E-03	Chang et al. 2017
ssion	SNCA	0.70	1.75	4.3E-04	Bonifati et al. 2014, Chang et al. 2017, Nalls et al. 2014
R1 R2 R3 R4 R5 R6	BAP1 ZNF184	0.77 0.81	1.99 2.34	1.6E-03 2.9E-03	Chang et al. 2017 Chang et al. 2017

Dopamine pathways across Braak stages

Do we mainly capture cell type composition differences?

ADCY1

From bulk to single-cell transcriptomics

From bulk to single-cell transcriptomics

Svensson et al., bioRxiv 2019

A good understanding of biological functions requires data integration technologies

Codeluppi et al, Nature methods 2018

scRNA-seq Whole transcriptome Loss of spatial information

Spatial transcriptomics

Retain spatial information Limited in the number of genes

Nucleic Acids Research, 2020 1 doi: 10.1093/nar/gkaa740

Tamim Abdelaal

SpaGE: Spatial Gene Enhancement using scRNA-seq

Tamim Abdelaal^{^D1,2}, Soufiane Mourragui^{1,3}, Ahmed Mahfouz^{^D1,2,4,†} and Marcel J.T. Reinders^{1,2,4,*,†}

¹Delft Bioinformatics Lab, Delft University of Technology, Delft 2628XE, The Netherlands, ²Leiden Computational Biology Center, Leiden University Medical Center, Leiden 2333ZC, The Netherlands, ³Computational Cancer Biology, Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands and ⁴Department of Human Genetics, Leiden University Medical Center, Leiden 2333ZC, The Netherlands

Received May 16, 2020; Revised July 30, 2020; Editorial Decision August 24, 2020; Accepted August 25, 2020

Abdelaal et al. Nucleic Acids Research 2020

SpaGE Spatial Gene Expression Enhancement

scRNA-seq (reference) (~25,000 genes)

+

Spatial transcriptomics (query) (~ 10-1,000 genes)

Novel spatial gene expression (~ 25,000 genes)

PRECISE: Mourragui et al, Bioinformatics. 2019

SpaGE Spatial Gene Expression Enhancement

SpaGE on primary visual cortex (VISp)

STARmap 1,549 cells 1,020 genes Wang et al. Science 2018

scRNA-seq

14,249 cells 34,617 transcripts Tasic et al. Nature 2018

SpaGE on primary visual cortex (VISp)

STARmap 1,549 cells 1,020 genes

scRNA-seq

14,249 cells

Tasic et al. Nature 2018

34,617 transcripts

Wang et al. Science 2018

SpaGE outperforms Seurat, Liger and gimVI

STARmap 1,549 cells 1,020 genes

Wang et al. Science 2018

scRNA-seq

14,249 cells 34,617 transcripts Tasic et al. Nature 2018

Wrongly measured, correctly predicted

Wrongly measured, correctly predicted

Predicting unmeasured genes

SpaGE Predicted

Predicting unmeasured genes

SpaGE scales to large spatial datasets

MERFISH 64,373 cells 155 genes Moffit et al. Science 2018

Preoptic region

scRNA-seq

31,299 cells 18,646 transcripts Moffit et al. Nature 2018

SpaGE scales to large spatial datasets

MERFISH 64,373 cells 155 genes Moffit et al. Science 2018

Preoptic region

scRNA-seq

31,299 cells

18,646 transcripts Moffit et al. Nature 2018

SpaGE scales to large spatial datasets

MERFISH 64,373 cells 155 genes Moffit et al. Science 2018

SpaGE
 Seurat
 Liger
 iger

Preoptic region

scRNA-seq

31,299 cells

18,646 transcripts Moffit et al. Nature 2018

- We take a functional genomics approach to better understand the role of genetic variation in brain function and disease
- Using the AHBA, we identified several genes and pathways associated with the PD progression in the brain
- SpaGE predicts spatial expression of unmeasured genes at the single cell level
- SpaGE outperforms state-of-the-art methods using is simpler, scalable and more flexible approach.

Thank You!

a.mahfouz@lumc.nl
 <u>https://www.lcbc.nl/</u>
 @ahmedElkoussy

TU Delft Soufiane Mourragui Marcel Reinders

LUMC Bob J. van Hilten

Amsterdam UMC Wilma D.J. van de Berg

Université de Lille Marie-Christine Chartier-Harlin

Erasmus MC Vincenzo Bonifati

