Using public RNA-sequence data to predict rare disease genes

n F

Patrick Deelen

24-02-2021

111

Our current knowledge of genes is biased

THE TOP 10

The ten most studied genes of all time are described in more than 40,000 papers.

"Out of the 20,000 or so protein-coding genes in the human genome, just 100 account for more than one-quarter of the papers"

Elie Dolgin, Nature 2015

Using 30,000 RNA-seq samples to predict gene function

Prediction of gene functions

Human Phenotype Ontology (HPO)

Test performance of predictions

8,657 Pathways / HPO Terms

Predicted pathways and disease symptoms for all genes

-5

Gene prioritization Z-score

15

56,435 genes

Using GADO in a diagnostic setting

Patient specific input:

- Symptoms (HPO terms)
- Set of ± 250 genes that have potential disease causing variant

GADO:

→ Prioritization of genes predicted to cause the symptoms of a patient

Patient specific output:

Input set ranked based on the genes that are most likely to cause symptoms

Predict gene functions. Discover potential disease genes. Search here or paste a list of multiple genes (Ensembl IDs or HGNC symbols) -For example: SMIM1, Interferon signaling, Migraine, Autism TOOLS HPO gene prioritisation Function enrichment Prioritize genes based on one or Predict which pathways are enriched multiple HPO phenotypes. for a set of genes. ightarrow continue \rightarrow continue N. 候 umcg / rijksuniversiteit groningen **CLEVER°FRANKE** © 2017 Department of Genetics, University Medical Center Groningen www.genenetwork.nl

GENE ♦ NETWORK

HPO GENE PRIORITIZATION

Select			-	
TERM	ID	REM	DVE	
Abnormality of the face	HP:0000271	Х	^	
Neoplasm of the endocrine system	HP:0100568	Х		
Abnormality of the anterior pituitary	HP:0011747	Х		
Intellectual disability	HP:0001249	Х		
• OPTIONAL: filter output on candida	ate genes			
OPTIONAL: filter output on candida MI-CYB CHOOSE A FILE	ate genes			

 \leftarrow GO BACK

候 umcg

 \mathbf{w}

PHENOT	YPE		ANNOTATED GENES	HPO-TERM				
Abnorm	ality of the fa	ice	1948	HP:0000271				
Neoplas	sm of the end	locrine system	88	HP:0100568				
Abnorm	ality of the a	nterior pituitary	186	HP:0011747				
Intellec	tual disability		1289	HP:0001249				
enes r 9orf47,	not found LOC1014482	02, C9orf172, C15orf	f38-AP3S2, C22orf46	Kleefstra S	yndrome			
enes f	ound							
he 100	prioritized sel	ected genes for the o	combination of these 4 phenotypes:				0	•
					-	32 ¹⁷	Se N	141 -0124
	RANK	GENE	Z-SCORE	NETW	DRK 48 ⁹⁰⁰	HP:010	HEIDDY	HPIDDL
			0.001		UIL	1.0	5.5	Į.
	2	EHMT1	2.961		2.6	0.6	1.3	1.5
-	0		2.070		1.0	1 1	1.1	1
÷.,	4		2.457	*** •**	1.7	1.1	1.1	1
2.1	5	SLU2DAD	2.345		0.8	0.7	-0.8	4.1
÷	0	11110	2.20		1.3	0.7	-U.I 1 0	2.0
	, D	NIID133	2.220		-0.7	1.0	1.9	21
÷.	q	FIE/JENIE1	2.131		11	0.7	0.0	3
1.1	10	DNA2	1 95	•	0.1	15	0.5	17
÷	11	ATP50	1.55	•.	0.5	0.7	17	0.9
	12	MAML 2	1.865	•*	1	0.9	0.8	1.1
	13	DMXL2	1.847	-*	0.9	1.1	0	1.7
	14	GRK5	1.823	-	0.4	1.4	1.5	0.3
	15	TP73	1.805	*	1.4	1.5	0.5	0.2
	16	PALM	1.782	-*	1.3	1.5	1	-0.2
	17	ו סראס	1 755	**	0.8	-0.1	11	17

Unsolved case: OBSCN

GENE NETV	: VORK v2.0	Search here or paste a list of multiple gen	nes (En 🔻 HOM	ie faq api
PHENOTY	PE		ANNOTATED GENES	HPO-TERM
Dilated car	rdiomyopathy		99	HP:0001644
Genes not MFSD14B, C	t found DISP3			c HU
Gene prio RANK	GENE	Z-SCORE	NETWORK	HP:00016
Gene prio RANK	GENE CACNA1S	Z-SCORE 7.8	NETWORK	499.00016
Gene prior RANK	GENE CACNA1S RPL3L	Z-SCORE 7.8 7.1	NETWORK	499,00016 7.8 7.1
Gene prior RANK	GENE CACNA1S RPL3L OBSCN	Z-SCORE 7.8 7.1 6	NETWORK	499,00016 7.8 7.1 6
Gene prior RANK 1 2 3 4	ritization GENE CACNA1S RPL3L OBSCN CALU	Z-SCORE 7.8 7.1 6 4.3	NETWORK	4,3
Gene prior RANK 1 2 3 4 5	ritization GENE CACNA1S RPL3L OBSCN CALU PLXNA1	Z-SCORE 7.8 7.1 6 4.3 3.6	NETWORK	4.3 3.6
Gene prior RANK	ritization GENE CACNA1S RPL3L OBSCN CALU PLXNA1 OPN4	Z-SCORE 7.8 7.1 6 4.3 4.3 3.6 3.5	NETWORK	4.3 3.6 3.5
Gene prio RANK 1 2 3 4 5 6 7	ritization GENE CACNA1S RPL3L OBSCN CALU CALU PLXNA1 OPN4 COL18A1	Z-SCORE 7.8 7.1 6 4.3 4.3 3.6 3.5 3.2	NETWORK	HP:001b 7.8 7.1 6 4.3 3.6 3.5 3.2
Gene prior RANK 1 2 3 4 5 6 7 8	ritization GENE CACNA1S RPL3L OBSCN CALU CALU PLXNA1 OPN4 COL18A1 MUL1	Z-SCORE 7.8 7.1 6 4.3 4.3 3.6 3.5 3.5 3.2 2.9	NETWORK ペ ペ ペ ペ ペ ペ ペ ペ ペ ペ ペ ペ ペ	4.3 3.6 3.2 2.9
Gene prior RANK 1 2 3 4 5 6 7 8 9	ritization GENE CACNA1S RPL3L OBSCN CALU CALU PLXNA1 OPN4 COL18A1 MUL1 ALPK2	Z-SCORE 7.8 7.1 6 4.3 4.3 3.6 3.5 3.5 3.2 2.9 2.7	NETWORK	4.3 3.6 3.2 2.9 2.7

Unsolved case: OBSCN

OBSCN predicted functions

GENE NETWORK v2.0 Search here or paste a list of multiple genes (Ensemble	IDs or HGNC symbols)	- Home	FAQ API
OBSCN obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF Gene predictability score: 0.66 (1)		ct P	nromosome 1 rotein coding
SHOW PATHWAYS & PHENOTYPES CO-REGULATED GENES TISSUE SELECT DATABASE REACTOME HUMAN PHENOTYPE ONTOLOGY GO biological press GO CELLULAR COMPONENT KEG PATHWAY TERM	ES PROCESS GO MOLECULAR P-VALLIE DIR	RECTION ANNOTATE) NETWORK
cardiac muscle contraction	8.7 × 10 ⁻⁹	_ _	
akalatal musala contraction	-		
Skeletal muscle contraction	1.5 × 10 ⁻⁶	· · · · ·	*
muscle filament sliding	1.5 × 10 ⁻⁶ 2.2 × 10 ⁻⁶	▲ –	-х -х
muscle filament sliding sarcomere organization	1.5 × 10 ⁻⁶ 2.2 × 10 ⁻⁶ 7.7 × 10 ⁻⁶		ス イ イ
muscle filament sliding sarcomere organization striated muscle contraction	1.5 × 10 ⁻⁶ 2.2 × 10 ⁻⁶ 7.7 × 10 ⁻⁶ 4.7 × 10 ⁻⁵		ス イ イ イ
skeletal muscle contraction muscle filament sliding sarcomere organization striated muscle contraction striated muscle myosin thick filament assembly	1.5×10^{-6} 2.2×10^{-6} 7.7×10^{-6} 4.7×10^{-5} 4.4×10^{-4}		メ メ メ メ 、

Dilated cardiomyopathy genes + OBSCN

Pathway enrichment analysis

Using GADO in practice

Cohort of 83 solved cases

- Each case has on average 56 variants in known disease-causing genes
- In 42% of cases the causal variant is in the top 3
- Cohort of 61 cases not solved by routine diagnostics
 - We found a strong candidate gene for 10 cases
 - Due to a stringent cut-off on average 2.9 genes per cases were looked at in detail

GWAS summary statistics give each gene a p-value

Co-regulation captures relatiosnhips between genes in a tissue

Integration prioritises core genes strongly co-regulated with genes inside GWAS loci

Predicted key-genes often loss of function intolerance

Prioritizing core genes for 25 traits and yielded 158 significant key genes

IBD key gene prioritization

NFKB1 is co-regulated with *cis* and *trans* genes

IBD key gene prioritization

Rare disease gene prediction using IBD key gene scores

Rare disease symptom (HPO)	AUC
Abnormal delayed hypersensitivity skin test	0.93
Recurrent candida infections	0.93
Recurrent staphylococcal infections	0.91
Lymphocytosis	0.90
Chronic mucocutaneous candidiasis	0.89
Recurrent cutaneous fungal infections	0.89
Autoimmune hemolytic anemia	0.88
Antiphospholipid antibody positivity	0.87
B lymphocytopenia	0.86
Eczematoid dermatitis	0.85

Strongly depleted for loss of function alleles

Enriched for known rare disease genes

Can be used to predict new rare disease genes

Large effect

KidneyNetwork

KidneyNetwork

A) Prediction accuracy of 99 kidney related HPO-terms

KidneyNetwork

KidneyNetwork incorporated in the GADO method on

Future improvements – directed networks

Growth of public RNA-seq

Number of publicly available human RNA-seq samples in the European Nucleotide Archive

Acknowledgements

Annique Claringbould Olivier Bakker Floranne Boulogne Laura R. Claus Floor Schukking Sophie Mulcahy Symmons Sipko van Dam Johanna C. Herkert Juha M. Karjalainen Harm Brugge Kristin M.Abbott Cleo C. van Diemen Paul A. van der Zwaag Erica H. Gerkes **Evelien Zonneveld-Huijssoon** Jelkje J. Boer-Bergsma Pytrik Folkertsma

Tessa Gillett K. Joeri van der Velde Roan Kanninga Peter C. van den Akker Sabrina Z. Jan Edgar T. Hoorntje P te Rijdt Wouter Yvonne |. Vos Jan D.H. Jongbloed Conny M.A. van Ravenswaaij-Arts Richard Sinke Birgit Sikkema-Raddatz Wilhelmina S. Kerstjens-Frederikse Morris A. Swertz Nine V.A.M. Knoers Albertien M. van Eerde Lude Franke

