

Metabolomics-based predictors as markers of health and disease

Dr. ir. Erik van den Akker

Molecular Epidemiology - Leiden University Medical Center Pattern Recognition & Bioinformatics - Delft University of Technology Leiden Computational Biology Center / Leiden Center for Computational Oncology e.b.van den akker@lumc.nl

Biological Age Biomarkers

To quantify the age-related decline

'Clocks' The rationale for training (omics) age-predictors

Original Article

Circulating Proteomic Signatures of Chronological Age

Cristina Menni,^{1,*} Steven J. Kiddle,^{2,3,*} Massimo Mangino,¹ Ana Viñuela,¹

Attde protection research Measuring Biological Age via Metabonomics: The Metabolic Age Score Johannes Hertel,*^{1,1} Nele Friedrich,^{1,8} Katharina Wittfeld,¹¹ Maik Pietzner,¹ Kathrin Budde,¹

Aim Training and evaluating a Nightingale metabolomics age-predictor

Nightingale Health blood metabolomics

- Highly standardized
- □ Affordable
- 226 metabolites
- Soft cardiovascular focus
- □ Known age-related dynamics

Kirsi Auro^{1,2,3,*}, Anni Joensuu^{1,2,*}, Krista Fischer⁴, Johannes Kettunen^{1,2,5}, Perttu Salo^{1,2}, Hannele Mattsson^{1,2},

Study Population after Quality Control

BBMRI: 25 453 samples from 26 biobanks

Training and evaluating the age-predictor 5 cross-fold validation

predicted age = $\beta_0 + \beta_1 m_1 + \beta_2 m_2 + \dots + \beta_{56} m_{56} + \epsilon$

Training the age-predictor Contributing metabolites

Note: metabolites are scaled and centered before modelling!

Training and evaluating the age-predictor Leave-One-Biobank-Out Cross Validation

Construction of the metaboAge Score The age-independent part of the age-predictor

Evaluating the metaboAge Score Tracking Age-Related Disease

Associations with Clinical Risk Factors

Body Mass Index

 $\Delta age = \beta_0 + \beta_1 BMI + \beta_2$ chronological age + β_3 gender + ϵ

Associations with Current Clinical Endpoints Diabetes Mellitus Status

PROSPER - INCIDENT CARDIOVASCULAR EVENTS

Phenotype	HR	95% CI	<i>p</i> -value
Coronary events	1.25	1.11 - 1.40	2.64 x 10⁻⁰⁴
Cardiovascular events	1.20	1.08 - 1.33	4.86 x 10 ⁻⁰⁴
Vascular mortality	1.57	1.31 - 1.88	8.56 x 10 ⁻⁰⁷
All-cause mortality	1.42	1.25 – 1.61	9.14 x 10 ⁻⁰⁸
Heart failure hospitalisation	1.68	1.37 – 2.06	5.42 x 10 ⁻⁰⁷

Effect independent of BMI, smoking, diabetes and hypertension and medication • Nightingale Health blood metabolomics predicts age reasonably (r = 0.65)

- Comparable with transcriptomics & metabolomics clocks
- Worse than epigenetics clocks (*r* > 0.9). **Does this matter?**
- *MetaboAge* shows promise as an biomarker
 - *MetaboAge* associates significantly with clinical risk factors
 - *MetaboAge* associates significantly with current clinical end points
 - *MetaboAge* associates significantly with future clinical end points
- *MetaboAge* is:
 - Highly standardized
 - Affordable
 - Easy to implement

Discussion **Other clocks**

Small correlation with Horvath's methylation clock

What outcomes do the clocks predict? What do they predict independently?

Small correlation with Deelen's mortality predictor

ARTICLE

https://doi.org/10.1038/s41467-019-11311-9

OPEN A metabolic profile of all-cause mortality risk

identified in an observational study of 44,168 individuals

Joris Deelen tal.#

Discussion Metabolomics as a read-out of intervention success

Other risk factors might be readily predicted And transformed in discrepancy-based predictors

Daniele Bizzarri

Application 1: Imputation

 $\Delta Diabetes$, $\Delta Obesity$, ...

Platform	Samples	Measurements
Nighting ale	349	224
Biocrates	356	163
Lipidyzer	307	1107
Metabolon	304	762

Cathelijn Kuijt

Dennis Mook

ELANET (fixed)	(fixed) AGE		BMI		SEX		DIAB	
R-squared	RSQ	df	RSQ	df	RSQ	df	RSQ	df
Nightingale	35,72%	96	36,01%	42	68,91%	58	47,88%	45
Biocrates	47,25%	121	42,17%	96	55,96%	94	55,49%	50
Lipidyzer	51,88%	154	17,51%	104	38,03%	231	35,75%	129
Metabolon	59,50%	162	48,66%	188	77,00%	195	60,23%	135

Some platforms are more predictive for cardio-metabolic variables

Availability Manuscript & tools

metaboAge

Welcome to the webtool for calculating metabolic age (*'metaboAge'*) from raw Nightingale Health 1H-NMR metabolomics data.

Please refer to our manuscript when using metaboAge in your work:

E.B. van den Akker et al. "MetaboAge: a novel biomarker for biological age based on the BBMRI-NL 1H-NMR metabolomics repository" (<u>submitted</u>)

Jurriaan Barkey Wolf

Instructions

For the webtool to work, the input data needs to be provided in a specific format. This format should be similar to the raw data files you received from Nightingale Health.

Please ensure that your dataset looks like this example dataset before submitting.

This means that:

Daniele Bizzarri

R-shiny application is coming to compute metaboAge and other scores!

Acknowledgements

LU Leiden University MC Medical Center

Section of Molecular Epidemiology

Eline Slagboom Marian Beekman Thies Gehrmann Daniele Bizzarri Jurriaan Barkey Wolf Joris Deelen Fatih Bogaards

Department of Medical Statistics

Jelle Goeman Hein Putter

Department of Internal Medicine

Wouter Jukema Dennis Mook

Stella Trompet

Leiden Computational Biology Center

Marcel Reinders Cathelijn Kuijt

BBMRI-NL Consortium Partners

BBMRI.nl

Biobanking and BioMolecular resources Research Infrastructure The Netherlands

MIMOmics

Health~Holland #++ollaw