Dimension reduction methods		Summary

Multi-omics data integration with mixOmics

A/Prof. Kim-Anh Lê Cao

NHMRC Career Development Fellow Melbourne Integrative Genomics School of Mathematics and Statistics

@mixOmics team | www.lecao-lab.science.unimelb.edu.au

イロン イボン イヨン イヨン

Feb 2021

Kim-Anh Lê Cao | @mixOmics team

A holistic view	Dimension reduction methods		Summary
000000			

When biology and statistics meet

"Data don't make any sense, we will have to resort to statistics."

(ロ) (四) (三) (三)

Feb 2021

Kim-Anh Lê Cao | @mixOmics team

A holistic view •000000	Dimension reduction methods		

When biology and statistics meet

A close interaction between statisticians, bioinformaticians and molecular biologists is essential to provide meaningful results

- Unlimited quantity of data from multiple and heterogeneous sources
- Computational issues to foresee
- Biological interpretation for validation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Keep pace with new technologies

A holistic view	Dimension reduction methods		Summary
000000			

A holistic view of a biological system

From reductionism ...

1 gene = 1 hypothesis = 1 statistical test

 \Downarrow

... to holism: Thousands of molecules = **??**

Feb 2021

(日) (同) (日) (日)

Kim-Anh Lê Cao | @mixOmics team

A holistic view	Dimension reduction methods		Summary
000000			

The 'omes and the biological dogma? not that straighforward

 $\frac{\text{Transcriptomics}}{\sim 100,000 \text{ transcripts}}$

 $\stackrel{\downarrow}{\text{Proteomics}} \sim 1,000,000 \text{ proteins}$

 $\begin{matrix} \downarrow \\ \text{Metabolomics} \\ \sim 2,500 \text{ compounds} \end{matrix}$

 $\begin{array}{c} \mbox{Microbiome} \\ \sim 1,500 \mbox{ trillion microbes} \end{array}$

:

Clinical data many

イロト イボト イヨト イヨト

Feb 2021

Kim-Anh Lê Cao | @mixOmics team

A holistic view	Dimension reduction methods		Summary
000000			

A new research field to establish

(ロ) (四) (三) (三)

Feb 2021

Kim-Anh Lê Cao | @mixOmics team

A holistic view	Dimension reduction methods		Summary
000000			

A new research field to establish

Start with a holistic view, rather than a traditional, reductionist, hypothesis-driven view, then generate new hypotheses.

Feb 2021

Kim-Anh Lê Cao | @mixOmics team

0000000 000000 000 000 000 000

Data integration from an analytical point of view

(日) (同) (日) (日)

Feb 2021

Kim-Anh Lê Cao | @mixOmics team

A holistic view 00000●0	Dimension reduction methods		

Aims

Molecular entities act together to trigger cells' responses. We need to shift the 'one-gene hypothesis' paradigm to obtain deeper insight into biological systems.

Multivariate analysis:

- Identify a combination rather than univariate biomarkers
- Reduce the dimension of the data for a better understanding of complex biological systems

Image: A matrix

∃⇒ < ∃⇒

Feb 2021

Integrate multiple sources of biological data

Expectations from 'omics data integration

- $\hfill\square$ An overview of the role of each 'omics in a biological system
- A better understanding of the relationship between 'omics types
- □ A molecular signature with insights into molecular mechanisms

イロト イボト イヨト イヨト

Feb 2021

- □ A predictive analytical model
- \Box All of the above!

	Dimension reduction methods •00000		
Multivariate analysis			

Matrix factorisation methods

Build components that aggregate observable *variables* (e.g. genes, transcripts, proteins) to summarise sources of variation in the data

- Reduce data dimension
- Handle data characteristics (difficult otherwise with conventional statistical methods)
- Capture and explain variation (information) in the data

Example of multivariate methods: Principal Component Analysis (PCA), Projection to Latent Structures (PLS) models for data integration

Kim-Anh Lê Cao | @mixOmics_team

	Dimension reduction methods		
Multivariate analysis			

Matrix decomposition & dimension reduction

- Component scores are linear combination of features (« P)
- Loading weights indicate the importance of each feature in the linear combination
- Feature selection: weights shrunk to zero using Lasso penalisation

(日) (同) (日) (日)

	Dimension reduction methods		
Multivariate analysis			

Matrix decomposition & dimension reduction

- Component scores are linear combination of features (« *P*) that discriminate the sample groups
- Loading weights indicate the importance of each feature in the discriminative linear combination
- Feature selection: weights shrunk to zero using Lasso penalisation

(日) (同) (日) (日)

	Dimension reduction methods		
Multivariate analysis			

Sample visualisation in a reduced space

Example: SRBCT data with 63 samples and 3,116 genes

• Unsupervised exploratory analysis: 'similar' samples cluster but no information about sample groups is included in the analysis

• Supervised analysis: Samples cluster according to their respective group

• • • • • • • • • • •

	Dimension reduction methods		
Multivariate analysis			

Multi-omics data integration with **DIABLO**

- Component scores are linear combination of a subset of selected features that are highly correlated across omics
- Loading weights indicate the importance of each selected feature in the linear combination

Singh A, Gautier B, Shannon C, Vacher M, Rohart F, Tebbutt S, Lê Cao K-A (2019). DIABLO: identifying key molecular drivers from multi-omic assays, an integrative approach. *Bioinformatics* 35 (17).

Feb 2021

Kim-Anh Lê Cao | @mixOmics team

	Dimension reduction methods		
Multivariate analysis			

DIABLO: sample visualisation

Feb 2021

Kim-Anh Lê Cao | @mixOmics team

	Dimension reduction methods 00000●		
Multivariate analysis			

DIABLO: multi-omics signatures

Circos plot

Correlation circle plot

イロン イ団 と イヨン イヨン

э

Feb 2021

Kim-Anh Lê Cao | @mixOmics team

	Dimension reduction methods	Example ●00	
Neonate study			

#smallbig study: the first week of human life

Small biosample amount: < 1ml of blood from newborns, five data types

イロト イボト イヨト イヨト

Feb 2021

Lee, Shannon, ..., Lê Cao, ... & Kollman (2019) Dynamic molecular changes during the first week of human life follow a robust developmental trajectory. *Nat Comm* 10:1092.

Kim-Anh Lê Cao | @mixOmics team

	Dimension reduction methods	Example ○●○	
Neonate study			

Single omics

Dramatic developmental changes emerge when comparing later days of life to D0 but the correlation structure is a hairball mess!

Feb 2021

Kim-Anh Lê Cao | @mixOmics team

	Dimension reduction methods	Example ○○●	
Neonate study			

Multi-omics integration

New biological insights not revealed by single omics analysis (e.g. prostaglandin-endoperoxide synthase 2) and pathways common to all data types (interferon, neutrophil degranulation pathways, complement cascade).

Feb 2021

Kim-Anh Lê Cao | @mixOmics_team

omes An R toolkit for multivariate data analysis and statistical integration of biological 'omics data

Rohart F, Gautier B, Singh, M, Lê Cao K-A. mixOmics: an R package for 'omics feature selection and multiple data integration. *PLoS Comp Biol* 13(11).

Feb 2021

Kim-Anh Lê Cao | @mixOmics team

Dimension reduction methods	Software	Summary
	00	

Nineteen multivariate methods (13 novel)

Each method can answer a specific biological question

 \hookrightarrow watch this space on www.mixOmics.org for a handbook and online courses.

Feb 2021

Kim-Anh Lê Cao | @mixOmics team

Dimension reduction methods		Summary ●00

Want to go further? Here are our latest extensions

- Integration of microbiome and omics T1D TrialNet prevention study: proteomics, 16S and metaproteomics (Gavin et al. 2018 Diabetes Care)
- Integration of time course omics data to identify coordinated profiles Method paper + application (Bodein et al. 2019 Frontiers in Genetics)
- Inclusion of pathway information for a hybrid data & knowledge-driven integration
 Method + application (Singh et al. 2019 DIABLO Bioinformatics)
- Removal of batch effects (esp. microbiome)
 Manuscript (Wang et al. bioRxiv 2020 358283)

(日) (同) (日) (日)

Dimension reduction methods		Summary ○●○

Take-home messages

- We are entering a new era that first requires data-driven approaches to make sense of big biological data
- From a holistic to a hypothesis-generating approach
- Does not exclude a priori biological knowledge (e.g. pathway analysis) in computational methods
- New field emerges that blends computationally savvy biological scientists and vice-versa
- Development of computational tools is important to advance knowledge

・ロト ・同ト ・ヨト ・ヨト

Dimension reduction methods		Summary
		000

Acknowledgements

mixOmics team

Sébastien Déjean, François Bartolo I K-A Lê Cao, Florian Rohart, Benoît Gautier Amrit Singh III and many mixOmics international users

Lê Cao lab alumni and members

Staff: Florian Rohart, Nicholas Matigian, Benoît Gautier, Malathi Imiyage Dona, Zitong Li, Aleks Dakic, Al Abadi , Saritha Kodikara

PhD: Amrit Singh, Jasmin Straube, Chao Liu, Ralph Patrick, Syeda Zahir, Aimee Hanson, Yiwen Wang, Isaac Virshup, Yidi Deng

Australian Governme

STEMCELLS AUSTRALIA

Many of our great collaborators

Smallbig: Casey Shannon, Tobias Kollman, Scott Tebutt (UBC I+I) Rheumatoid Arthritis: Ranjeny Thomas (UQ) Ankylosing Spondylitis: Matt Brown (KCL III) Microbial bioprocesses: Olivier Chapleur (INRAE II) Stem cells: Christine Wells (UoM) single cell multi-omics: Matt Ritchie, Luyi Tian (WEHI), Heather Lee (UoN) timeOmics: Antoine Bodein, Arnaud Droit (ULaval I+I)

(ロ) (四) (三) (三)

Feb 2021

We are open to new collaborations and scientific exchanges!

 \rightarrow www.mixomics.org | www.lecao-lab.science.unimelb.edu.au \leftarrow

Kim-Anh Lê Cao | @mixOmics team